Pareto optimization for resonances

ILLyA KARABASH

Resonances in 1-D photonic crystals (PC).

from the cover of "Photonic Crystals: Molding the Flow

of Light" by Joannopoulos, Johnson, Winn, Meade '08 1_D photonic Crystal

PC are periodic (or close to periodic) metallo-dielectric nanos-
tructures affecting EM waves propagation governed by
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resonances L.

In 1-D case, resonances w are eigenvalues of
y"(x) = —w’B(x)y(x), 0<x<{, (1)

equipped with radiation boundary conditions.

Let Z(B) be the set of reso- T
nances associated with a struc- }
ture B(X) B decay rate

Motivation for optimization

Normally passing waves create the electric field
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B = —Im wy > 0 is the decay rate, Eh\f\v _
o, = Re wy is the angular frequency. R *‘i’ t
Assume that for a certain j,
B; < infy P, |-
then Bz & cjj(x3)e™®it for large t | )
(under certain additional assumptions).
The field strength is essentially determined by [3; = —Im w;.
Problem. Minimization of the decay rate 3 = |Im w)|

for a given range of frequencies «.

Related optimization problems

Specially  designed  res- nwanted mechanical reso-
onators  for  particular hynces:

frequencies:
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The first Tacoma Narrows Bridge on the

day of its collapse

gﬁ;g:gsg E‘)oer[I;{ by Max Kohl, Chemnitz, Germany. CWRU (¢, / /en wikipedia.org /wiki/ Tacoma_Narrows_Bridge_1940)
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Rigorous approach to optimization

Consider two types of families A of admissible structures. The
resonator structure is represented by either a function B(x), or
a measure dM.

= Side constraints, 0 < by < B(x) < bs.
A, ={B(x) € L*(0,{) b1 < B(x) < b, a.e.}.

= [otal mass constraints for a Borel measure dM:
App = { nonnegative dM : J"f;: dM <m}, m>0.

In the latter case, equation (1) has to be generalized to

dZ /
dMydx = —w?y(x), 0 < x <.
The set of admissible resonances.
L[A] = UpeaZ(B) o © U

For small dielectric contrast by — by < by Adecorae
A frequency « is admissible if &« = Re w for certain w € X[A].

Minimal decay for admissible «

Buin(a) = min |Im w|
Re w=«
weX(A)
Green curves above are . They

always exist for optimization problems over A, and Ay

Main results: strl_JcturaI theorems
and reduction to 4-D

Theorem (IK, Asymptotic Analysis '13)

Resonators of minimal decay for a frequency « under
the side constraints are extremal PC.

That is, optimal B(x) over A, are piecewise constant and take
only b] and bz.

Positions of optimal switch points between media by and b, are
described by the nonlinear equation

y" = —w’y {b1 + (b2 — b1)XC+(UZ)} ;
where XC+(C) =1ifImC >0, and XQ(C) =0ifImC<0.

Theorem (IK, J. Differential Equations '14)

Let dM be of minimal decay over Ay;. Then
dM consists of a finite number of point masses.

Reduce the problems to optimization over 3 and 4 real param-
eters, resp.

Calculation of optimal w over Ay

Additionally, strong restrictions on optimal masses m; and their
positions a; are obtained.

For low frequencies, optimizers and X[Ayg] are explicitly found:
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The locations of the circle | +1/m| = 1/m, the line Im w =

—21€, and the hyperbola Re w? = n]u% are given schematically.



