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Resonances in 1-D photonic crystals (PC).

from the cover of "Photonic Crystals: Molding the Flow
of Light" by Joannopoulos, Johnson, Winn, Meade ’08 1-D photonic crystal
PC are periodic (or close to periodic) metallo-dielectric nanos-
tructures affecting EM waves propagation governed by
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nonhomogeneous structure, x ∈ D .
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 correspond to
resonances ω.

In 1-D case, resonances ω are eigenvalues of
y ′′(x) = −ω2B(x)y(x), 0 < x < `, (1)

equipped with radiation boundary conditions.
Let Σ(B) be the set of reso-
nances associated with a struc-
ture B(x).

Motivation for optimization
Normally passing waves create the electric field
E = (0, E2, 0):

E2(x3, t) =
∑+∞
k=−∞ ckψk(x3)e−iωkt,

ωk = αk − iβk ∈ C− are resonances,

βk = − Imωk > 0 is the decay rate,
αk = Reωk is the angular frequency.
Assume that for a certain j,
βj� infk 6=jβk,
then E2 ≈ cjψj(x3)e−iωjt for large t
(under certain additional assumptions).
The field strength is essentially determined by βj = − Imωj.

Problem. Minimization of the decay rate β = | Imω|
for a given range of frequencies α.

Related optimization problems
Specially designed res-
onators for particular
frequencies:

Turning fork, by Max Kohl, Chemnitz, Germany. CWRU
Physics Dept.

Unwanted mechanical reso-
nances:

The first Tacoma Narrows Bridge on the
day of its collapse
(http://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_1940)

Rigorous approach to optimization
Consider two types of families A of admissible structures. The
resonator structure is represented by either a function B(x), or
a measure dM.
• Side constraints, 0 ≤ b1 ≤ B(x) ≤ b2.
A∞ = { B(x) ∈ L∞(0, `) : b1 ≤ B(x) ≤ b2 a.e.}.

• Total mass constraints for a Borel measure dM:
AM = { nonnegative dM :

∫`+
0− dM ≤ m}, m > 0.

In the latter case, equation (1) has to be generalized to
d2y ′

dMdx
= −ω2y(x), 0 < x < `.

The set of admissible resonances.
Σ[A] := ∪B∈AΣ(B)
For small dielectric contrast b2 − b1� b2:
A frequency α is admissible if α = Reω for certain ω ∈ Σ[A].

Minimal decay for admissible α

βmin(α) = min
Reω=α

ω∈Σ(A)

| Imω|

Green curves above are resonances of minimal decay. They
always exist for optimization problems over A∞ and AM.

Main results: structural theorems
and reduction to 4-D

Theorem (IK, Asymptotic Analysis ’13)
Resonators of minimal decay for a frequency α under
the side constraints are extremal PC.
That is, optimal B(x) over A∞ are piecewise constant and take
only b1 and b2.
Positions of optimal switch points between media b1 and b2 are
described by the nonlinear equation

y ′′ = −ω2y
b1 + (b2 − b1)χC+

(y2)
 ,

where χC+
(ζ) := 1 if Im ζ > 0, and χC+

(ζ) = 0 if Im ζ ≤ 0.

Theorem (IK, J. Differential Equations ’14)
Let dM0 be of minimal decay over AM. Then
dM0 consists of a finite number of point masses.
Reduce the problems to optimization over 3 and 4 real param-
eters, resp.

Calculation of optimal ω over AM
Additionally, strong restrictions on optimal massesmj and their
positions aj are obtained.
For low frequencies, optimizers and Σ[AM] are explicitly found:

(a) ` < m < 2`, (b) 2` < m < 4`, (c) 4` ≤ m.
The locations of the circle |ω+ i/m| = 1/m, the line Imω =
− 1
2`
, and the hyperbola Reω2 = 1

m`
are given schematically.


